Advances in Treatment of Metastatic Brain and Spine Tumors

Lewis Z. Leng, M.D.

Neurosurgeon
Co-Director of Endoscopic Skull Base and Pituitary Surgery
California Pacific Medical Center

Clinical Assistant Professor of Neurology
Geisel School of Medicine at Dartmouth

18th Conference on Healthcare of the Chinese in North America
San Francisco, CA
October 8-9, 2016
Disclosures

- No Financial Disclosures
Metastatic Brain Tumors

- In the U.S. in 2016 according to American Cancer Society
 - Approximately 1.7 million new cancer cases
 - Almost 1 in 4 cases will have metastases to the brain
 - ~ 400,000 cases
Solitary or Oligo Metastatic Brain Tumors (<3)

Diagnosis

- Known cancer history

- Unresectable, <2cm, deep, - edema, radiosensitive

- Resectable, >2cm, superficial, + edema, radioresistant

Surgery followed by WBRT, SRS, SRS + WBRT

Whole Brain Radiation Therapy and/or Stereotactic Radiosurgery
Solitary or Oligo Metastatic Brain Tumors (<3)

Diagnosis

Unknown cancer history

Systemic work-up negative

Biopsy/resect

WBRT, SRS, SRS +WBRT

Surgery followed by WBRT, SRS, SRS +WBRT

Systemic work-up positive

Biopsy non-CNS site

WBRT, SRS, SRS +WBRT
Multiple Metastatic Brain Tumors (>3)

- Known cancer history
 - WBRT or SRS
- Unknown cancer history
 - Systemic work-up negative
 - Biopsy
 - Systemic work-up positive
 - Biopsy non-CNS site
 - WBRT or SRS
Surgical Resection of Solitary Metastatic Brain Tumors

- Patchell et al. 1990, Vecht et al. 1993, Mintz et al. 1996.\(^1\)\(^-\)\(^3\) - compared Surgery+WBRT vs. WBRT alone

 - **Median survival** (Patchell - 40 wks vs. 15 wks, Vecht - 10 mos vs. 6 mos, Mintz - 5.6 mos vs. 6.3 mos)

 - **Rate of local recurrence** (Patchell - 20% vs. 52%)

 - **Maintained QOL** KPS \geq 70 (Patchell - 38 wks vs. 8 wks). Better functional independent survival with combined treatment (Vecht)

- Patchell et al. 1998 - compared Surgery vs. Surgery +WBRT \(^4\)

 - **Rate of local recurrence** - 46% vs. 10%

 - **Overall recurrence** - 70% vs. 18.18%

 - **Median survival** - 43 wks vs. 46 wks

Whole Brain Radiation Therapy versus Stereotactic Radiosurgery

- **WBRT Toxicity**

 - Brown et al. for oligo-metastatic disease randomized SRS (111 pts) vs. SRS+WBRT (102 pts)

 - **Cognitive deterioration** at 3 mos (63.5% vs. 91.7%)
 - **QOL change from baseline** at 3 mos (-0.1 pts vs. -12.0 pts)
 - 3 & 12 mos intracranial tumor control rate (75.3%/50.5% vs. 93.7%/84.6%)
 - 3 & 12 mos local tumor control rate (89.0%/72.8% vs. 96.8%/90.1%)
 - Medial overall survival (10.4 dos vs. 7.4 mos)

Surgery, WBRT, SRS - Maximizing benefit, minimizing harm

- Surgery - Part of combined therapy for local disease control and maintaining functional capacity
- WBRT - Primary/adjuvant therapy for CNS disease control. Negative neurocognitive effects
- SRS - Primary/adjuvant therapy for local disease control. Avoids neurocognitive effects of WBRT
What to do?

58 year old female with metastatic Breast Ca, 30-40 brain mets, large left cerebellar lesion with obstructive hydrocephalus
Endoscopic intraventricular surgery

- Endoscope adapted from cystoscope
- Endoscopic treatment of hydrocephalus. L’Espinasse and Kanavel first performed in 1910
- Mixter performed first endoscopic ventriculocisternostomy in 1923
- 1960s significant improvement of endoscope by Hopkins reinvigorated technique
58 year old female with metastatic Breast Ca, 30-40 brain mets, large left cerebellar lesion with obstructive hydrocephalus

- Endoscopic third ventriculostomy
- Whole Brain Radiation therapy POD#1
- Dc’ed to home POD#2
Laser Interstitial Thermal Therapy

- Stereotactic image-guided technique using laser fiber to ablate lesion soft tissue
- Originally introduced in 1983
- Laser interstitial irradiation to produce thermal damage
 - Greatest degree of penetration in the near-infrared spectrum
 - Selective thermal injury of pathologic tissue
 - Sharp ablation zone border
- Early efforts confounded by ability to control thermal damage

Laser Interstitial Thermal Therapy

- Development of real-time MR thermography to monitor treatment
- Coupled cooling mechanism over probe with feedback control mechanism and temperature limits
- Preliminary studies into malignant gliomas, cranial and spinal metastases, radiation necrosis, and epilepsy

Post-ablation Images

Damage model
Tumor Treating Fields

- Trial TTF + maintenance temozolomide vs TMZ alone ⁶
 - Terminated early at interim analysis
 - PFS 7.1 mos vs 4.0 mos
 - Overall survival 20.5 mos vs 15.6 mos

- Application of Tumor-Treating Fields to other cancers
 - Ongoing Trials

Targeted Systemic Therapy

- Targeted inhibitors and immunotherapy may improve control of CNS metastatic disease
 - Melanoma
 - Breast Ca
 - NSCLC

CPMC experience

- 79 patients with metastatic melanoma to the brain treated with CTLA-4Ab, PD-1Ab or BRAF (+/- MEK) inhibitors
 - Historically, melanoma with brain mets OS ~ 5mos
 - Median OS from brain met dx 12.8 mos
 - Median OS from stage IV dx 18.2 mos
Metastatic Spine Tumors

- Bone is the 3rd most common site of cancer metastasis after lungs and liver
- Majority of bony metastasis are in the spine
- Up to 40% of patients with metastatic cancer will have spinal metastasis during the course of their disease
Surgical intervention for metastatic spine tumors

- Patchell et al. landmark 2005 study evaluating the role of surgery for metastatic spine tumors

- Demonstrated benefit of surgery+RT over RT alone

 - Ambulating after Tx (84% vs 57%); Maintained ambulation (122 days vs 13 days); Regained ability to ambulate (62% vs 19%)

Surgical intervention for metastatic spine tumors

Laufer et al. 2013

- Laufer et al. study evaluated the outcomes of “Separation Surgery” approach using NOMS (Neurologic, Oncologic, Mechanical stability, Systemic disease) criteria.

- Resection of epidural tumor, creating “separation” of 2-3mm plus stabilization followed by single fraction or hypo fractionated SRS.

- 1 yr local progression 16.4%
 - Low dose hypo-fractionated (30Gy in 5-6 fractions) 22.6% progression
 - High dose hypo-fractionated (27Gy in 3 fractions) 4.1% progression
 - Single-fraction (24Gy) 9% progression

- “Minimally Invasive” Approach

Metastatic Spine Tumors

Diagnosis → Known cancer history → NOMS criteria: Neurologic Oncologic Mechanical Systemic → Fractionated Radiation Therapy or Stereotactic Radiosurgery → Separation Surgery followed by SRS
Metastatic Spine Tumors

Diagnosis → Unknown cancer history → Systemic work-up

Biopsy spine lesion

NOMS criteria: Neurologic Oncologic Mechanical Systemic

Biopsy non-spine site

Separation Surgery followed by SRS

Fractionated Radiation Therapy or Stereotactic Radiosurgery
Minimally invasive surgery for metastatic spine tumors

- Retrospective comparison between MIS (23 patients) vs traditional open surgery (19 patients)\(^{10}\)

 - Pathology included Lung, Breast, Myeloma, Renal, Melanoma, Prostate, Ovarian, Thyroid

 - MIS vs Open: OR time (2.2 hrs vs 3.2 hrs), EBL (240ml vs. 900ml), Postop transfusions (0 pts vs 12 pts), Postop bedres (2 d vs 4 d), LOS (7.2 d vs 9.25 d), EORTC QOL-C30 improvement (13.6 vs. 9.8), QLQ-BM22 improvement (14.07 vs. 4.65)

Minimally Invasive Spine Surgery for Malignant Spine Tumors

• 87 yo male who developed new LBP x 4 mos. L4 lesion concerning for malignancy. IR biopsy returned as Leiomyosarcoma. Represented with progressive low back pain, weakness, and left radicular leg pain.

• MIS decompression of left L4 nerve root and Percutaneous pedicle stabilization from L3-L5
 • Discharged to rehab POD3
 • Discharged to home POD14
• Stereotactic radiation therapy 2 weeks postop
Evolving Technologies and Therapeutics

• Surgery
 • Minimally invasive cranial surgical techniques (Endoscopic, Laser Interstitial Thermal Therapy)
 • Minimally invasive spine surgery (Minimally invasive decompression, Percutaneous stabilization, Vertebral augmentation)

• Radiation therapy
 • Stereotactic radiosurgery

• Tumor Treating Fields

• Targeted systemic therapy

• Maximizing Benefit, Minimizing Harm
Thank You